Compressibility of individual sequences by the class of generalized finite-state information-lossless encoders is investigated. These encoders can operate in a variable-rate mode as well as a fixed-rate one, and they allow for any finite-state scheme of variable-length-to-variable-length coding. For every individual infinite sequence x a quantity \rho(x) is defined, called the compressibility of x, which is shown to be the asymptotically attainable lower bound on the compression ratio that can be achieved for x by any finite-state encoder. This is demonstrated by means of a constructive coding theorem and its converse that, apart from their asymptotic significance, also provide useful performance criteria for finite and practical data-compression tasks. The proposed concept of compressibility is also shown to play a role analogous to that of entropy in classical information theory where one deals with probabilistic ensembles of sequences rather than with individual sequences. While the definition of \rho(x) allows a different machine for each different sequence to be compressed, the constructive coding theorem leads to a universal algorithm that is asymptotically optimal for all sequences.
Segundo artículo de los autores del algoritmo LZ77. Éste se conoce como LZ78 y se basa en un algoritmo de compresión sin perdida que es una clase de compresión de datos que permite que los datos originales se reconstruyan perfectamente a partir de los datos comprimidos sin pérdida de información. La compresión sin pérdida se utiliza en los casos en que es importante que los datos originales y los descomprimidos sean idénticos. Articulo muy citado y que sirvió de base para 196 patentes reconocidas en la actualidad.
Especificaciones
- Autor/es: Jacob Ziv; Abraham Lempel.
- Fecha: 1978-09
- Publicado en: IEEE Transactions on Information Theory (Volume: 24, Issue: 5, September 1978, Pages: 530-536).
- Idioma: Inglés
- Formato: PDF
- Contribución: José Antonio Delgado-Penín.
- Palabras clave: Ordenadores y tratamiento de la información, Teoría de la información