An encryption method is presented with the novel property that publicly revealing an encryption key does not thereby reveal the corresponding decryption key. This has two important consequences: (1) Couriers or other secure means are not needed to transmit keys, since a message can be enciphered using an encryption key publicly revealed by the intented recipient. Only he can decipher the message, since only he knows the corresponding decryption key. (2) A message can be “signed” using a privately held decryption key. Anyone can verify this signature using the corresponding publicly revealed encryption key. Signatures cannot be forged, and a signer cannot later deny the validity of his signature. This has obvious applications in “electronic mail” and “electronic funds transfer” systems. A message is encrypted by representing it as a number M, raising M to a publicly specified power e, and then taking the remainder when the result is divided by the publicly specified product, n, of two large secret primer numbers p and q. Decryption is similar; only a different, secret, power d is used, where e * d = 1(mod (p - 1) * (q - 1)). The security of the system rests in part on the difficulty of factoring the published divisor, n.
Articulo clásico que expone el diseño y funcionamiento del primer sistema de cifrado asimétrico: RSA, base de la criptografía de clave pública que se usa actualmente.
Especificaciones
- Autor/es: R. L. Rivest, A. Shamir, L. Adleman.
- Fecha: 1978-02
- Publicado en: Communications of the ACM; Volume 21; Issue 2; Feb. 1978; pp 120-126.
- Idioma: Inglés
- Formato: PDF
- Contribución: Víctor A. Villagrá González.
- Palabras clave: Ingeniería de seguridad de los productos, Matemáticas, Teoría de la información