This report presents data from which one may obtain the probability that a pulsed-type radar system will detect a given target at any range. This is in contrast to the usual method of obtaining radar range as a single number, which can be taken mathematically to imply that the probability of detection is zero at any range greater than this number, and certainty at any range less than this number. Three variables, which have so far received little quantitative attention in the subject of radar range, are introduced in the theory: l.The time taken to detect the target. 2.The average time interval between false alarms (false indications of targets). 3.The number of pulses integrated. It is shown briefly how the results for pulsed-type systems may be applied in the case of continuous-wave systems. Those concerned with systems analysis problems including radar performance may profitably use this work as one link in a chain involving several probabilities. For instance, the probability that a given aircraft will be detected at least once while flying any given path through a specified model radar network may be calculated using the data presented here as a basis, provided that additional probability data on such things as outage time etc., are available. The theory developed here does not take account of interference such as clutter or man-made static, but assumes only random noise at the receiver input. Also, an ideal type of electronic integrator and detector are assumed. Thus the results are the best that can be obtained under ideal conditions. It is not too difficult, however, to make reasonable assumptions which will permit application of the results to the currently available types of radar. The first part of this report is a restatement of known radar fundamentals and supplies continuity and background for what follows. The mathematical part of the theory is not contained herein, but will be issued subsequently as a separate report.
Artículo pionero sobre la teoría de la detección aplicada a los radares pulsados. Artículo de gran interés por las 80 referencias de las que toma apoyo y soporte. Algunas de ellas de gran valor documental según el interés del lector en temas de Proceso de señal y Matemáticas. Este artículo tiene una segunda parte que el autor ha denominado "Mathematical Appendix" publicado en el año 1948 y donde está todo el desarrollo matemático de su teoría de detección. A este autor se debe una función matemática necesaria en el diseño de sistemas de detección de comunicaciones digitales coherente e incoherente: la función "Q-Marcum" en la teoría de la detección estadística.
Especificaciones
- Autor/es: J.I.Marcum.
- Fecha: 1960-04
- Publicado en: IRE Transactions on Information Theory (Volume: 6, Issue: 2, April 1960, Pages: 59-267).
- Idioma: Inglés
- Formato: PDF
- Contribución: José Antonio Delgado-Penín.
- Palabras clave: Geociencia y teledetección, Matemáticas, Proceso de señal, Sistemas electrónicos aeroespaciales, Teoría de la información