Mostrar nube de etiquetas

In 1948 Shannon developed fundamental limits on the efficiency of communication over noisy channels. The coding theorem asserts that there are block codes with code rates arbitrarily close to channel capacity and probabilities of error arbitrarily close to zero. Fifty years later, codes for the Gaussian channel have been discovered that come close to these fundamental limits. There is now a substantial algebraic theory of error-correcting codes with as many connections to mathematics as to engineering practice, and the last 20 years have seen the construction of algebraic-geometry codes that can be encoded and decoded in polynomial time, and that beat the Gilbert-Varshamov bound. Given the size of coding theory as a subject, this review is of necessity a personal perspective, and the focus is reliable communication, and not source coding or cryptography. The emphasis is on connecting coding theories for Hamming and Euclidean space and on future challenges, specifically in data networking, wireless communication, and quantum information theory.

Notas/Comentarios de José A. Delgado-Penín:
Artículo de revisión de un autor prolífico en el campo de las Teorías de la Comunicación e Información. Este articulo forma parte de una colección de revisiones históricas de lo más importante hasta aquella fecha (1998) en el mundo del soporte teórico de la Telecomunicación. En este caso de todo lo relativo a la codificación de canal (codificaciones algebraica, cuántica,'space-time', 'trellis', etc.).

Especificaciones

Foro

Foro Histórico

de las Telecomunicaciones

Contacto

logo COIT
C/ Almagro 2. 1º Izq. 28010. Madrid
Teléfono 91 391 10 66 coit@coit.es
logo AEIT Horizontal
C/ General Arrando, 38. 28010. Madrid
Teléfono 91 308 16 66 aeit@aeit.es

Copyright 2024 Foro Histórico de las Telecomunicaciones