This paper presents a complete solution for the optimum linear system which operates on n stationary and correlated random processes so as to minimize error variance in filtering or prediction. A simple closed-form answer results if the matrix \Phi(s) of spectra of the input signals can be factored such that \Phi(s) = G(-s)G^{T}(s) where G(s) and G^{1}(s) represent matrices of stable transforms in the Laplace variables. A general factoring procedure for rational matrices is presented. G(s) can be viewed as the system which would reproduce signals with the spectrum of \Phi(s) when excited by n uncorrelated unit-density white-noise sources. In the case of a multidimensional filter, when G(s) is separated by partial fractions into two terms, S(s) + N(s) , having 1hp poles from the signal and noise spectra, respectively, the optimum unity-feedback filter is shown to have a forward-loop transference of S(s)N^{-1}(s).
Artículo de análisis matemático que trata de un método de factorización del espectro utilizado en análisis de sistemas en régimen permanente y cuyas señales son modeladas por procesos aleatorios estacionarios. Fue innovador en su tiempo.
Especificaciones
- Autor/es: M.Davis.
- Fecha: 1963-10
- Publicado en: IEEE Transactions on Automatic Control (Volume: 8, Issue: 4, October 1963, Pages: 296-305).
- Idioma: Inglés
- Formato: PDF
- Contribución: José Antonio Delgado-Penín.
- Palabras clave: Matemáticas, Proceso de señal, Sistemas de control, Teoría de la información