The application of quantum mechanics to the problem of metallic conduction has cleared up many of the difficulties which were so apparent in the free electron theories of Drude and Lorentz. Sommerfeld* assumed that the valency electrons of the metallic atoms formed an electron gas which obeyed the FermiDirac statistics, instead of Maxwellian statistics, and, using in the main classical ideas, showed how the difficulty of the specific heat would be removed. He was, however, unable to determine the temperature dependence of the resistance, as his formulae contained a mean free path about which little could be said. F. Bloch took up the question of the mechanics of electrons in a metallic lattice, and showed that if the lattice is perfect an electron can travel quite freely through it. Therefore so long as the lattice is perfect the conductivity is infinite, and it is only when we take into account the thermal motion and the impurities that we obtain a finite value for the conductivity. On this view all the electrons in a metal are free, and we cannot assume, as we do in the classical theory, that only the valency electrons are free. This does not give rise to any difficulty in the theory of metallic conduction, as the direct proportionality between the conductivity and the number of free electrons no longer holds when the Pauli principle is taken into account. If there is no external electric field, the number of electrons moving in any direction is equal to the number moving in the opposite direction. The action of a field is to accelerate or retard the electrons, causing them to make transitions from one set of energy levels to another. This can only happen if the final energy levels are already unoccupied, and therefore only those electrons whose energies are near the critical energy of the Fermi distribution can make transitions and take part in conduction, as it is only in the neighbourhood of the critical energy that the energy levels are partly filled and partly empty. These electrons are few in number compared with the valency electrons, and are what should be called the conduction electrons. On the classical theory alone are the valency electrons, the free electrons and the conduction electrons the same.
Publicación de muy alto valor científico en el campo de la física cuántica y del estado sólido. El tratado del tema tiene dos partes: la primera se presenta en este artículo donde lleva a cabo una aplicación de la teoría de la física cuántica a la interpretación de la conducción eléctrica en materiales conductores y aislantes (aparece el concepto de la teoría de las bandas de valencia y conducción); la segunda parte es otro artículo continuación de éste y en donde contempla la presencia de impurezas en los metales (Semiconductores) y con ello amplía su teoría junto con resultados de experimentos para validar su teoría. En esta primera parte aplica la mecánica cuántica para postular unos modelos restrictivos que faciliten la comprensión del problema de la conducción eléctrica en los materiales sólidos. En la parte final del artículo hace unos comentarios sobre lo que implican sus modelos cuando se realizan experiencias para verificar la teoría restringida que el autor desarrolla a través del artículo (pags.490/491).
Especificaciones
- Autor/es: Alan Herries Wilson.
- Fecha: 1931-10
- Publicado en: Proceedings of the Royal Society of London. Series A Vol. 133, No. 822, Pags. 458-491, 01 October 1931.
- Idioma: Inglés
- Formato: PDF
- Contribución: José Antonio Delgado-Penín.
- Palabras clave: Circuitos de estado sólido, Dispositivos electrónicos