The classical filtering and prediction problem is re-examined using the Bode-Shannon representation of random processes and the "state-transition" method of analysis of dynamic systems. New results are: (1) The formulation and methods of solution of the problem apply without modification to stationary and nonstationary statistics and to growing-memory and infinite-memory filters. (2) A nonlinear difference (or differential) equation is derived for the covariance matrix of the optimal estimation error. From the solution of this equation the co-efficients of the difference (or differential) equation of the optimal linear filter are obtained without further calculations. (3) The filtering problem is shown to be the dual of the noise-free regulator problem. The new method developed here is applied to two well-known problems, confirming and extending earlier results. The discussion is largely self-contained and proceeds from first principles; basic concepts of the theory of random processes are reviewed in the Appendix.

Especificaciones

  • Autor/es: R. E. Kalman.
  • Año: 1960.
  • Publicado en: ASME Journal of Basic Engineering, Series D, vol.82, pp.35-45, 1960.
  • Idioma: Inglés
  • Formato: PDF
  • Contribución: Aníbal Figueiras.
  • Palabras clave: Proceso de señal, Sistemas de control
Foro

Foro Histórico

de las Telecomunicaciones

Contacto

logo COIT
C/ Almagro 2. 1º Izq. 28010. Madrid
Teléfono 91 391 10 66 coit@coit.es
logo AEIT Horizontal
C/ General Arrando, 38. 28010. Madrid
Teléfono 91 308 16 66 aeit@aeit.es

Copyright 2021 Foro Histórico de las Telecomunicaciones